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(b) Limitations of Current Chart QA Data Generation
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(a) The Chart Data Challenge: Metadata vs. Diversity
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(a) Supervised Fine-Tuning (SFT) on the BigCharts
Dataset boosts perfformance, with our Reinforcement
Wht s the tota inernationa student Learning (RL) method delivering even greater gains.
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Chart Understanding: Progress from Qwen - BigCharts-SFT - BigCharts-RL
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(b) A Training Framework that Combines Supervised 10-
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